generated from C4T-BuT-S4D/ad-boilerplate
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_helper.py
147 lines (124 loc) · 4.4 KB
/
model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import random
import csv
import numpy as np
import catboost
import onnx
import onnx.numpy_helper as nphelp
from onnx.tools import update_model_dims
class DatasetBuilder:
def __init__(self):
self.X = []
self.y = []
def to_csv(self, file_name):
keys = self.keys() + ["test_result"]
with open(file_name, 'w') as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=keys)
writer.writeheader()
for i, row in enumerate(self.X):
row = row + [self.y[i]]
dict_row = {x: y for x, y in zip(keys, row)}
writer.writerow(dict_row)
def build(self):
return self.X, self.y
def random_rows(self, n):
for i in range(n):
self.X.append(self.random_row())
self.y.append(self.random_prediction())
if len(set(self.y)) == 1:
self.y[0] = 1 - self.y[0]
return self
def add_row(self, row, y):
self.X.append(row)
self.y.append(y)
return self
@classmethod
def random_row(cls):
return [cls.random_age(), cls.random_sex(), cls.random_rh(), cls.random_blood_type(),
cls.random_sugar_level()]
@staticmethod
def keys():
return ['age', 'sex', 'rh', 'blood_type', 'sugar_level']
@classmethod
def make_dict(cls, row):
return {x[0]: x[1] for x in zip(cls.keys(), row)}
@staticmethod
def random_prediction():
return random.randint(0, 1)
@staticmethod
def random_age():
return random.randint(20, 65)
@staticmethod
def random_sex():
return random.randint(0, 1)
@staticmethod
def random_rh():
return random.choice([-1, 1])
@staticmethod
def random_blood_type():
return random.randint(0, 4)
@staticmethod
def random_sugar_level():
return round(random.random() * 20, 3)
class ModelHelper:
def __init__(self):
self.cb_model = None
self.onnx_model = None
def build_cb_model(self, X, y):
cbc = catboost.CatBoostClassifier(iterations=20, allow_writing_files=False, silent=True)
cbc.fit(X, y)
self.cb_model = cbc
return cbc
def build_onnx_model(self, size=5, pos=3, thresh=20, graph_name='vaccine-model', company_name='c4tbuts4d'):
# Create input.
x = onnx.helper.make_tensor_value_info('X', onnx.TensorProto.FLOAT, ["N", 5])
# Create output.
res_out = onnx.helper.make_tensor_value_info('output', onnx.TensorProto.BOOL, ["N"])
# Create const tensors.
mask_array = np.zeros(size, dtype=int)
mask_array[pos] = 1
value_tensor = mask_array * thresh
mask_tensor = onnx.helper.make_tensor('mask', onnx.TensorProto.BOOL, [size], mask_array)
greater_tensor = onnx.helper.make_tensor('val', onnx.TensorProto.FLOAT, [size], value_tensor)
shape_t = onnx.helper.make_tensor('out_shape', onnx.TensorProto.INT64, [1], np.array([-1]))
graph = onnx.helper.make_graph(nodes=[
onnx.helper.make_node(
'Greater',
inputs=[x.name, greater_tensor.name],
outputs=['greater_out'],
),
onnx.helper.make_node(
'And',
inputs=['greater_out', mask_tensor.name],
outputs=['and_out'],
),
onnx.helper.make_node(
'Compress',
inputs=['and_out', mask_tensor.name],
outputs=['compress_out'], axis=1, ),
onnx.helper.make_node(
'Reshape',
inputs=['compress_out', 'out_shape'],
outputs=[res_out.name]
)
],
name=graph_name,
inputs=[x, ],
outputs=[res_out, ],
initializer=[greater_tensor, mask_tensor, shape_t]
)
model_def = onnx.helper.make_model(graph,
producer_name=company_name)
onnx.checker.check_model(model_def)
self.onnx_model = model_def
return self.onnx_model
def save(self, out_path):
if self.cb_model:
# Save model to ONNX-ML format
self.cb_model.save_model(
out_path,
format="onnx",
export_parameters={
}
)
if self.onnx_model:
onnx.save(self.onnx_model, out_path)