|
1 | 1 | <p align="center">
|
2 |
| - <img alt="giskardlogo" src="readme/giskard_logo.png#gh-light-mode-only"> |
3 |
| - <img alt="giskardlogo" src="readme/giskard_logo_green.png#gh-dark-mode-only"> |
| 2 | + <img alt="giskardlogo" src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/giskard_logo.png#gh-light-mode-only"> |
| 3 | + <img alt="giskardlogo" src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/giskard_logo_green.png#gh-dark-mode-only"> |
4 | 4 | </p>
|
5 | 5 | <h1 align="center" weight='300' >The testing framework dedicated to ML models, from tabular to LLMs</h1>
|
6 | 6 | <h3 align="center" weight='300' >Scan AI models to detect risks of biases, performance issues and errors. In 4 lines of code. </h3>
|
@@ -36,28 +36,28 @@ We officially support Python 3.9, 3.10 and 3.11.
|
36 | 36 | ______________________________________________________________________
|
37 | 37 |
|
38 | 38 | <p align="center">
|
39 |
| - <img src="readme/architechture_giskard.png" alt="Giskard Architechture" width="800"> |
| 39 | + <img src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/architechture_giskard.png" alt="Giskard Architechture" width="800"> |
40 | 40 | </p>
|
41 | 41 |
|
42 | 42 | Giskard is a Python library that automatically **detects vulnerabilities** in AI models, from tabular models to LLM, including performance biases, data leakage, spurious correlation, hallucination, toxicity, security issues and many more.
|
43 | 43 |
|
44 | 44 | It's a powerful tool that helps data scientists **save time and effort** drilling down on model issues, and produce more **reliable and trustworthy models**.
|
45 | 45 |
|
46 | 46 | <p align="center">
|
47 |
| - <img src="readme/scan_example.gif" alt="Scan Example" width="800"> |
| 47 | + <img src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/scan_example.gif" alt="Scan Example" width="800"> |
48 | 48 | </p>
|
49 | 49 |
|
50 | 50 | Instantaneously generate test suites for your models ⤵️
|
51 | 51 |
|
52 | 52 | <p align="center">
|
53 |
| - <img src="readme/suite_example.png" alt="Test Suite Example" width="800"> |
| 53 | + <img src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/suite_example.png" alt="Test Suite Example" width="800"> |
54 | 54 | </p>
|
55 | 55 |
|
56 | 56 |
|
57 | 57 | Giskard works with any model, in any environment and integrates seamlessly with your favorite tools ⤵️ <br/>
|
58 | 58 |
|
59 | 59 | <p align="center">
|
60 |
| - <img width='600' src="readme/tools.png"> |
| 60 | + <img width='600' src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/tools.png"> |
61 | 61 | </p>
|
62 | 62 | <br/>
|
63 | 63 |
|
@@ -143,7 +143,7 @@ The Giskard hub is Giskard's premium offering. It provides a number of additiona
|
143 | 143 | If you are interested in learning more about Giskard's premium offering, please [contact us](https://www.giskard.ai/contact).
|
144 | 144 |
|
145 | 145 | <p align="center">
|
146 |
| - <img src="readme/catalog_example.png" alt="Scan Example" width="700px"> |
| 146 | + <img src="https://raw.githubusercontent.com/giskard-ai/giskard/main/readme/catalog_example.png" alt="Scan Example" width="700px"> |
147 | 147 | </p>
|
148 | 148 |
|
149 | 149 | ## 1. Start the Giskard hub
|
|
0 commit comments