|
177 | 177 | "id": "3PGiyUwAJpdK"
|
178 | 178 | },
|
179 | 179 | "source": [
|
180 |
| - "To prepare for the vulnerability scan, make sure to wrap your dataset using Giskard's Dataset class. More details [here](https://docs.giskard.ai/en/latest/open_source/scan/scan_nlp/index.html#step-1-wrap-your-dataset)." |
| 180 | + "To prepare for the vulnerability scan, make sure to wrap your dataset using Giskard's Dataset class. More details [here](https://docs.giskard.ai/en/stable/open_source/scan/scan_nlp/index.html#step-1-wrap-your-dataset)." |
181 | 181 | ]
|
182 | 182 | },
|
183 | 183 | {
|
|
258 | 258 | "id": "NwunAyRvJzOS"
|
259 | 259 | },
|
260 | 260 | "source": [
|
261 |
| - "To prepare for the vulnerability scan, make sure to wrap your model using Giskard's Model class. You can choose to either wrap the prediction function (preferred option) or the model object. More details [here](https://docs.giskard.ai/en/latest/open_source/scan/scan_nlp/index.html#step-2-wrap-your-model)." |
| 261 | + "To prepare for the vulnerability scan, make sure to wrap your model using Giskard's Model class. You can choose to either wrap the prediction function (preferred option) or the model object. More details [here](https://docs.giskard.ai/en/stable/open_source/scan/scan_nlp/index.html#step-2-wrap-your-model)." |
262 | 262 | ]
|
263 | 263 | },
|
264 | 264 | {
|
|
310 | 310 | "source": [
|
311 | 311 | "### Scan your model for vulnerabilities with Giskard\n",
|
312 | 312 | "\n",
|
313 |
| - "Giskard's scan allows you to detect vulnerabilities in your model automatically. These include performance biases, unrobustness, data leakage, stochasticity, underconfidence, ethical issues, and more. For detailed information about the scan feature, please refer to our [scan documentation](https://docs.giskard.ai/en/latest/open_source/scan/scan_nlp/index.html)." |
| 313 | + "Giskard's scan allows you to detect vulnerabilities in your model automatically. These include performance biases, unrobustness, data leakage, stochasticity, underconfidence, ethical issues, and more. For detailed information about the scan feature, please refer to our [scan documentation](https://docs.giskard.ai/en/stable/open_source/scan/scan_nlp/index.html)." |
314 | 314 | ]
|
315 | 315 | },
|
316 | 316 | {
|
|
329 | 329 | "cell_type": "markdown",
|
330 | 330 | "metadata": {},
|
331 | 331 | "source": [
|
332 |
| - "If you are running in a notebook, you can display the scan report directly in the notebook using `display(...)`, otherwise you can export the report to an HTML file. Check the [API Reference](https://docs.giskard.ai/en/latest/reference/scan/report.html#giskard.scanner.report.ScanReport) for more details on the export methods available on the `ScanReport` class." |
| 332 | + "If you are running in a notebook, you can display the scan report directly in the notebook using `display(...)`, otherwise you can export the report to an HTML file. Check the [API Reference](https://docs.giskard.ai/en/stable/reference/scan/report.html#giskard.scanner.report.ScanReport) for more details on the export methods available on the `ScanReport` class." |
333 | 333 | ],
|
334 | 334 | "id": "9dd5baaaa6a7ee62"
|
335 | 335 | },
|
|
442 | 442 | "<li>Overreliance on spurious correlations like the presence of specific word</li>\n",
|
443 | 443 | "<li>Use of complex models with large number of parameters that tend to overfit the training data</li>\n",
|
444 | 444 | "</ul>\n",
|
445 |
| - "<p>To learn more about causes and solutions, check our <a href="https://docs.giskard.ai/en/latest/getting-started/key_vulnerabilities/robustness/index.html">guide on robustness issues</a>.</p>\n", |
| 445 | + "<p>To learn more about causes and solutions, check our <a href="https://docs.giskard.ai/en/stable/getting-started/key_vulnerabilities/robustness/index.html">guide on robustness issues</a>.</p>\n", |
446 | 446 | " </div>\n",
|
447 | 447 | " </div>\n",
|
448 | 448 | " </div>\n",
|
|
1021 | 1021 | "<li>Data is reflecting some structural biases and societal prejudices</li>\n",
|
1022 | 1022 | "<li>Use of complex models with large number of parameters that tend to overfit the training data</li>\n",
|
1023 | 1023 | "</ul>\n",
|
1024 |
| - "<p>To learn more about causes and solutions, check our <a href="https://docs.giskard.ai/en/latest/getting-started/key_vulnerabilities/ethics/index.html">guide on unethical behaviour.</a></p>\n", |
| 1024 | + "<p>To learn more about causes and solutions, check our <a href="https://docs.giskard.ai/en/stable/getting-started/key_vulnerabilities/ethics/index.html">guide on unethical behaviour.</a></p>\n", |
1025 | 1025 | " </div>\n",
|
1026 | 1026 | " </div>\n",
|
1027 | 1027 | " </div>\n",
|
|
1835 | 1835 | "* Slicing functions such as detectors of toxicity, hate, emotion, etc\n",
|
1836 | 1836 | "* Transformation functions such as generators of typos, paraphrase, style tune, etc\n",
|
1837 | 1837 | "\n",
|
1838 |
| - "To create custom tests, refer to [this page](https://docs.giskard.ai/en/latest/open_source/customize_tests/test_model/index.html).\n", |
| 1838 | + "To create custom tests, refer to [this page](https://docs.giskard.ai/en/stable/open_source/customize_tests/test_model/index.html).\n", |
1839 | 1839 | "\n",
|
1840 | 1840 | "For demo purposes, we will load a simple unit test (test_f1) that checks if the test F1 score is above the given threshold. For more examples of tests and functions, refer to the Giskard catalog."
|
1841 | 1841 | ]
|
|
0 commit comments