-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConfigurationCalibration.lua
executable file
·169 lines (141 loc) · 6.09 KB
/
ConfigurationCalibration.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
--[[
ConfigurationCalibration.lua
Copyright (c) 2018, Xamla and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
--]]
local torch = require 'torch'
local datatypes = require 'xamlamoveit.datatypes.env'
local autocal = require 'auto_calibration.env'
local ConfigurationCalibration = torch.class('ConfigurationCalibration', autocal) --datatypes)
function ConfigurationCalibration:__init(
--[[calibration_mode,
move_group_name,
cameras,
left_camera_id,
right_camera_id,
output_directory,
calibration_directory_template,
calibration_name_template,
calibration_flags_name,
circle_pattern_geometry,
circle_pattern_id,
checkerboard_pattern_geometry,
velocity_scaling,
base_poses,
capture_poses]]
configuration)
self.calibration_mode = configuration.calibration_mode or CalibrationMode.SingleCamera
self.move_group_name = configuration.move_group_name
self.cameras = configuration.cameras or {}
self.left_camera_id = configuration.left_camera_id
self.right_camera_id = configuration.right_camera_id
self.output_directory = configuration.output_directory or './calibration/'
self.calibration_directory_template = configuration.calibration_directory_template or '%Y-%m-%d_%H%M%S/'
self.calibration_name_template = configuration.calibration_name_template or '%Y-%m-%d_%H%M%S'
self.calibration_flags_name = configuration.calibration_flags_name or 'Default'
self.circle_pattern_geometry = configuration.circle_pattern_geometry or torch.Tensor({21, 8, 5.0}) -- rows, cols, pointDist
self.circle_pattern_id = configuration.circle_pattern_id or 21
self.checkerboard_pattern_geometry = configuration.checkerboard_pattern_geometry or torch.Tensor({7, 11, 10})
self.velocity_scaling = configuration.velocity_scaling or 0.2
self.base_poses = configuration.base_poses or {}
self.capture_poses = configuration.capture_poses or {}
self.camera_outputs = {} --this will contain paths to store the data for each individual camera
end
function ConfigurationCalibration:fromTable(t)
assert(type(t) == 'table', 'Source table argument must not be nil.')
for k, v in pairs(t) do
self[k] = v
end
end
function ConfigurationCalibration:toTable()
return {
calibration_mode = self.calibration_mode,
move_group_name = self.move_group_name,
cameras = self.cameras,
left_camera_id = self.left_camera_id,
right_camera_id = self.right_camera_id,
output_directory = self.output_directory,
calibration_directory_template = self.calibration_directory_template,
calibration_name_template = self.calibration_name_template,
calibration_flags_name = self.calibration_flags_name,
circle_pattern_geometry = self.circle_pattern_geometry,
circle_pattern_id = self.circle_pattern_id,
checkerboard_pattern_geometry = self.checkerboard_pattern_geometry,
velocity_scaling = self.velocity_scaling,
base_poses = self.base_poses,
capture_poses = self.capture_poses
}
end
function ConfigurationCalibration:clone()
local result = ConfigurationCalibration.new()
result:fromTable(self:toTable())
return result
end
function ConfigurationCalibration:__tostring()
local res = 'ConfigurationCalibration:\n'
for k, v in pairs(self:toTable()) do
if type(v) == 'table'then
local str_table = ''
for ii,vv in ipairs(v) do
str_table = string.format('%s %s', str_table, tostring(vv))
end
res = string.format('%s\t %s:\t %s\n', res, k, str_table)
elseif torch.isTypeOf(v, torch.DoubleTensor) then
local str = ''
for ii = 1, v:size(1) do
str = string.format('%s %s', str, tostring(v[ii]))
end
res = string.format('%s\t %s:\t %s\n', res, k, str)
else
res = string.format('%s\t %s:\t %s\n', res, k, tostring(v))
end
end
return res
end
function ConfigurationCalibration:createOutputDirectories()
local alt_directory = os.date(self.calibration_directory_template)
local alt_output_directory = path.join(self.output_directory, alt_directory)
print('creating directory.. '..alt_output_directory)
os.execute('mkdir -p ' .. alt_output_directory)
--we need one directory inside alt_output_directory for each available camera
local camera_serials = {}
for key, value in pairs(self.cameras) do
self.camera_outputs[value.serial] = {path, path_capture}
camera_serials[#camera_serials + 1] = value.serial
local camera_directory = path.join(alt_output_directory, value.serial)
print('creating directory.. '..camera_directory)
self.camera_outputs[value.serial].path = camera_directory
os.execute('mkdir -p ' .. camera_directory)
local images_output_directory = path.join(camera_directory, 'capture')
print('creating directory.. '..images_output_directory)
os.execute('mkdir -p ' .. images_output_directory)
self.camera_outputs[value.serial].path_capture = images_output_directory
end
print('self.camera_outputs=')
print(self.camera_outputs)
end
function ConfigurationCalibration:debugOutputDirs()
for key, value in pairs(self.camera_outputs) do
print(key,value)
end
end
function ConfigurationCalibration:getCameraDataOutputPath(serial)
return self.camera_outputs[serial].path_capture
end
function ConfigurationCalibration:getCameraCalibrationFileOutputPath(serial)
return path.join(self.camera_outputs[serial].path,'calibration.t7')
end
function ConfigurationCalibration:getSerialFromId(id)
return self.cameras[id].serial
end
return ConfigurationCalibration