Skip to content

Commit a47cf24

Browse files
committed
inverted pendulum experiment name
1 parent a532f2d commit a47cf24

File tree

2 files changed

+1
-1
lines changed

2 files changed

+1
-1
lines changed

hw2/hw2_instructions.pdf

1 Byte
Binary file not shown.

hw2/hw2_instructions.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -268,7 +268,7 @@ \subsection{Experiments}
268268

269269
\textbf{Problem 5. InvertedPendulum:} Run experiments in \verb|InvertedPendulum-v2| continuous control environment as follows:
270270
\begin{lstlisting}
271-
python train_pg_f18.py InvertedPendulum-v2 -ep 1000 --discount 0.9 -n 100 -e 3 -l 2 -s 64 -b <b*> -lr <r*> -rtg --exp_name hc_b<b*>_r<r*>
271+
python train_pg_f18.py InvertedPendulum-v2 -ep 1000 --discount 0.9 -n 100 -e 3 -l 2 -s 64 -b <b*> -lr <r*> -rtg --exp_name ip_b<b*>_r<r*>
272272
\end{lstlisting}
273273
where your task is to find the smallest batch size \texttt{b*} and largest learning rate \texttt{r*} that gets to optimum (maximum score of 1000) in less than 100 iterations. The policy performance may fluctuate around 1000 -- this is fine. The precision of \texttt{b*} and \texttt{r*} need only be one significant digit.
274274

0 commit comments

Comments
 (0)