@@ -117,9 +117,10 @@ def _validate_training_job(self, model: Model) -> bool:
117
117
try :
118
118
# when model has ref to training job, but field is not accessible, it is not valid
119
119
name = job .name
120
+ logger .debug ((f"can fetch training job name: { name } for model: (name:{ model .display_name } id:{ model .name } )" ))
120
121
return True
121
122
except RuntimeError :
122
- logger .info (f"cannot fetch training job name, not valid for model (name:{ model .display_name } id:{ model .name } )" )
123
+ logger .debug (f"cannot fetch training job name, not valid for model (name:{ model .display_name } id:{ model .name } )" )
123
124
124
125
return False
125
126
@@ -254,7 +255,6 @@ def _get_job_output_workunit(self, job: _TrainingJob) -> Iterable[MetadataWorkUn
254
255
job_conf = job .to_dict ()
255
256
if ("modelToUpload" in job_conf and "name" in job_conf ["modelToUpload" ] and job_conf ["modelToUpload" ]["name" ]):
256
257
257
- model_id = job_conf ["modelToUpload" ]["name" ].split ("/" )[- 1 ]
258
258
model_version_str = job_conf ["modelToUpload" ]["versionId" ]
259
259
job_urn = self ._make_job_urn (job )
260
260
@@ -314,12 +314,6 @@ def _get_ml_model_endpoint_workunit(self, model: Model, model_version: VersionIn
314
314
"""
315
315
Generate an MLModel and Endopint workunit for an VertexAI Model Version.
316
316
"""
317
- logging .info (f"starting model work unit for model { model .name } " )
318
-
319
- ml_model_group_urn = self ._make_ml_model_group_urn (model )
320
- model_name = self ._make_vertexai_name (entity_type = "model" , entity_id = model .name )
321
- ml_model_urn = self ._make_ml_model_urn (model_version , model_name = model_name )
322
- model_version_name = f"{ model_name } { self .config .model_name_separator } { model_version .version_id } "
323
317
324
318
endpoint : Optional [Endpoint ] = self ._search_endpoint (model )
325
319
endpoint_urn = None
0 commit comments