Skip to content

Commit bc19996

Browse files
committed
[wip] update scripts
1 parent c571d73 commit bc19996

File tree

1 file changed

+31
-9
lines changed

1 file changed

+31
-9
lines changed

metadata-ingestion/examples/ml/mlflow_dh_client_sample.py

+31-9
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,5 @@
11
import argparse
2-
32
from mlflow_dh_client import MLflowDatahubClient
4-
53
import datahub.metadata.schema_classes as models
64
from datahub.metadata.com.linkedin.pegasus2avro.dataprocess import RunResultType
75

@@ -14,11 +12,10 @@
1412
client = MLflowDatahubClient(token=args.token)
1513

1614
# Create model group
17-
# Using property classes directly
1815
model_group_urn = client.create_model_group(
19-
group_id="airline_forecast_models_group_4",
16+
group_id="airline_forecast_models_group",
2017
properties=models.MLModelGroupPropertiesClass(
21-
name="Airline Forecast Models Group 4",
18+
name="Airline Forecast Models Group",
2219
description="Group of models for airline passenger forecasting",
2320
created=models.TimeStampClass(
2421
time=1628580000000, actor="urn:li:corpuser:datahub"
@@ -28,14 +25,30 @@
2825

2926
# Creating a model with property classes
3027
model_urn = client.create_model(
31-
model_id="arima_model_5",
28+
model_id="arima_model",
3229
properties=models.MLModelPropertiesClass(
33-
name="ARIMA Model 6",
30+
name="ARIMA Model",
3431
description="ARIMA model for airline passenger forecasting",
3532
customProperties={"team": "forecasting"},
33+
trainingMetrics=[
34+
models.MLMetricClass(name="accuracy", value="0.9"),
35+
models.MLMetricClass(name="precision", value="0.8"),
36+
],
37+
hyperParams=[
38+
models.MLHyperParamClass(name="learning_rate", value="0.01"),
39+
models.MLHyperParamClass(name="batch_size", value="32"),
40+
],
41+
externalUrl="https:localhost:5000",
42+
created=models.TimeStampClass(
43+
time=1628580000000, actor="urn:li:corpuser:datahub"
44+
),
45+
lastModified=models.TimeStampClass(
46+
time=1628580000000, actor="urn:li:corpuser:datahub"
47+
),
48+
tags=["forecasting", "arima"],
3649
),
37-
version="6.0",
38-
alias="arima_model_6_alias",
50+
version="1.0",
51+
alias="champion",
3952
)
4053

4154
# Creating an experiment with property class
@@ -45,6 +58,12 @@
4558
name="Airline Forecast Experiment",
4659
description="Experiment to forecast airline passenger numbers",
4760
customProperties={"team": "forecasting"},
61+
created=models.TimeStampClass(
62+
time=1628580000000, actor="urn:li:corpuser:datahub"
63+
),
64+
lastModified=models.TimeStampClass(
65+
time=1628580000000, actor="urn:li:corpuser:datahub"
66+
),
4867
),
4968
)
5069

@@ -55,11 +74,14 @@
5574
created=models.AuditStampClass(
5675
time=1628580000000, actor="urn:li:corpuser:datahub"
5776
),
77+
customProperties={"team": "forecasting"},
5878
),
5979
training_run_properties=models.MLTrainingRunPropertiesClass(
6080
id="simple_training_run_4",
6181
outputUrls=["s3://my-bucket/output"],
6282
trainingMetrics=[models.MLMetricClass(name="accuracy", value="0.9")],
83+
hyperParams=[models.MLHyperParamClass(name="learning_rate", value="0.01")],
84+
externalUrl="https:localhost:5000",
6385
),
6486
run_result=RunResultType.FAILURE,
6587
start_timestamp=1628580000000,

0 commit comments

Comments
 (0)