-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathsample_face_detection.py
95 lines (79 loc) · 3.92 KB
/
sample_face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import cv2
import inspireface as ifac
from inspireface.param import *
import click
import numpy as np
race_tags = ["Black", "Asian", "Latino/Hispanic", "Middle Eastern", "White"]
gender_tags = ["Female", "Male", ]
age_bracket_tags = ["0-2 years old", "3-9 years old", "10-19 years old", "20-29 years old", "30-39 years old",
"40-49 years old", "50-59 years old", "60-69 years old", "more than 70 years old"]
@click.command()
@click.argument("resource_path")
@click.argument('image_path')
def case_face_detection_image(resource_path, image_path):
"""
This is a sample application for face detection and tracking using an image.
It also includes pipeline extensions such as RGB liveness, mask detection, and face quality evaluation.
"""
# Step 1: Initialize the SDK and load the algorithm resource files.
ret = ifac.launch(resource_path)
assert ret, "Launch failure. Please ensure the resource path is correct."
# Optional features, loaded during session creation based on the modules specified.
opt = HF_ENABLE_FACE_RECOGNITION | HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS | HF_ENABLE_INTERACTION | HF_ENABLE_FACE_ATTRIBUTE
session = ifac.InspireFaceSession(opt, HF_DETECT_MODE_ALWAYS_DETECT)
# Set detection confidence threshold
session.set_detection_confidence_threshold(0.5)
# Load the image using OpenCV.
image = cv2.imread(image_path)
assert image is not None, "Please check that the image path is correct."
# Perform face detection on the image.
faces = session.face_detection(image)
print(f"face detection: {len(faces)} found")
# Copy the image for drawing the bounding boxes.
draw = image.copy()
for idx, face in enumerate(faces):
print(f"{'==' * 20}")
print(f"idx: {idx}")
print(f"detection confidence: {face.detection_confidence}")
# Print Euler angles of the face.
print(f"roll: {face.roll}, yaw: {face.yaw}, pitch: {face.pitch}")
# Get face bounding box
x1, y1, x2, y2 = face.location
# Calculate center, size, and angle
center = ((x1 + x2) / 2, (y1 + y2) / 2)
size = (x2 - x1, y2 - y1)
angle = face.roll
# Apply rotation to the bounding box corners
rect = ((center[0], center[1]), (size[0], size[1]), angle)
box = cv2.boxPoints(rect)
box = box.astype(int)
# Draw the rotated bounding box
cv2.drawContours(draw, [box], 0, (100, 180, 29), 2)
# Draw landmarks
lmk = session.get_face_dense_landmark(face)
for x, y in lmk.astype(int):
cv2.circle(draw, (x, y), 0, (220, 100, 0), 2)
# Features must be enabled during session creation to use them here.
select_exec_func = HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS | HF_ENABLE_INTERACTION | HF_ENABLE_FACE_ATTRIBUTE
# Execute the pipeline to obtain richer face information.
extends = session.face_pipeline(image, faces, select_exec_func)
for idx, ext in enumerate(extends):
print(f"{'==' * 20}")
print(f"idx: {idx}")
# For these pipeline results, you can set thresholds based on the specific scenario to make judgments.
print(f"quality: {ext.quality_confidence}")
print(f"rgb liveness: {ext.rgb_liveness_confidence}")
print(f"face mask: {ext.mask_confidence}")
print(
f"face eyes status: left eye: {ext.left_eye_status_confidence} right eye: {ext.right_eye_status_confidence}")
print(f"gender: {gender_tags[ext.gender]}")
print(f"race: {race_tags[ext.race]}")
print(f"age: {age_bracket_tags[ext.age_bracket]}")
# Save the annotated image to the 'tmp/' directory.
save_path = os.path.join("tmp/", "det.jpg")
cv2.imwrite(save_path, draw)
print(f"\nSave annotated image to {save_path}")
if __name__ == '__main__':
os.makedirs("tmp", exist_ok=True)
case_face_detection_image()