@@ -535,42 +535,43 @@ def test_detect_anomalies_combo(self):
535
535
assert len (response .timeseries ) == n
536
536
assert isinstance (response .timeseries [0 ], TimeSeriesPoint )
537
537
538
- def test_detect_anomalies_combo_large_current (self ):
539
- config = AnomalyDetectionConfig (
540
- time_period = 15 , sensitivity = "low" , direction = "both" , expected_seasonality = "auto"
541
- )
542
-
543
- loaded_synthetic_data = convert_synthetic_ts (
544
- "tests/seer/anomaly_detection/test_data/synthetic_series" , as_ts_datatype = True
545
- )
546
- ts_history = loaded_synthetic_data .timeseries [0 ]
547
- last_history_timestamp = ts_history [- 1 ].timestamp
548
- last_history_value = ts_history [- 1 ].value
549
- n = 700 # should be greater than 7 days * 24 hours * 60 minutes * 15 minutes = 672
550
-
551
- # Generate new observation window of n points which are the same as the last point
552
- ts_current = []
553
- for j in range (1 , n + 1 ):
554
- ts_current .append (
555
- TimeSeriesPoint (
556
- timestamp = last_history_timestamp + config .time_period * 60 * j ,
557
- value = last_history_value ,
558
- )
559
- )
560
-
561
- context = TimeSeriesWithHistory (history = ts_history , current = ts_current )
562
-
563
- request = DetectAnomaliesRequest (
564
- organization_id = 1 , project_id = 1 , config = config , context = context
565
- )
566
-
567
- response = AnomalyDetection ().detect_anomalies (request = request , time_budget_ms = 10000 )
568
-
569
- assert isinstance (response , DetectAnomaliesResponse )
570
- assert isinstance (response .timeseries , list )
571
- assert len (response .timeseries ) == n
572
- assert isinstance (response .timeseries [0 ], TimeSeriesPoint )
573
- # assert False
538
+ # TODO: Enable this test once we have a way to run tests in parallel without causing multiple parallel runs
539
+ # def test_detect_anomalies_combo_large_current(self):
540
+ # config = AnomalyDetectionConfig(
541
+ # time_period=15, sensitivity="low", direction="both", expected_seasonality="auto"
542
+ # )
543
+
544
+ # loaded_synthetic_data = convert_synthetic_ts(
545
+ # "tests/seer/anomaly_detection/test_data/synthetic_series", as_ts_datatype=True
546
+ # )
547
+ # ts_history = loaded_synthetic_data.timeseries[0]
548
+ # last_history_timestamp = ts_history[-1].timestamp
549
+ # last_history_value = ts_history[-1].value
550
+ # n = 700 # should be greater than 7 days * 24 hours * 60 minutes * 15 minutes = 672
551
+
552
+ # # Generate new observation window of n points which are the same as the last point
553
+ # ts_current = []
554
+ # for j in range(1, n + 1):
555
+ # ts_current.append(
556
+ # TimeSeriesPoint(
557
+ # timestamp=last_history_timestamp + config.time_period * 60 * j,
558
+ # value=last_history_value,
559
+ # )
560
+ # )
561
+
562
+ # context = TimeSeriesWithHistory(history=ts_history, current=ts_current)
563
+
564
+ # request = DetectAnomaliesRequest(
565
+ # organization_id=1, project_id=1, config=config, context=context
566
+ # )
567
+
568
+ # response = AnomalyDetection().detect_anomalies(request=request, time_budget_ms=5000)
569
+
570
+ # assert isinstance(response, DetectAnomaliesResponse)
571
+ # assert isinstance(response.timeseries, list)
572
+ # assert len(response.timeseries) == n
573
+ # assert isinstance(response.timeseries[0], TimeSeriesPoint)
574
+ # assert False
574
575
575
576
def test_detect_anomalies_combo_large_current_timeout (self ):
576
577
0 commit comments