-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbroken.py
337 lines (278 loc) · 13.1 KB
/
broken.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import argparse
import os
import numpy as np
import math
import pandas as pd
import requests
import time
import PIL
from PIL import Image
from tensorboardX import SummaryWriter
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
import matplotlib.pyplot as plt
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.00005, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=64, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=16000, help="interval between image sampling")
parser.add_argument("--n_critic", type=int, default=320, help="number of training steps for discriminator per iter")
parser.add_argument("--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights")
parser.add_argument("--save_dir", type=str, default='TrainWB', help="directory to save logging information")
parser.add_argument("--name", type=str, default='GAN1', help="name of this training run")
opt = parser.parse_args(args=[])
print(opt)
tbx = SummaryWriter(opt.save_dir)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class GaussianNoise(nn.Module):
def __init__(self, stdev):
super().__init__()
self.stdev = stdev
def forward(self, x):
if self.training:
return x + torch.autograd.Variable(torch.randn(x.size()) * self.stdev)
return x
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(in_features=opt.latent_dim + opt.n_classes, out_features=4*4*1024),
nn.LeakyReLU(),
nn.BatchNorm1d(num_features=4*4*1024),
nn.Linear(in_features=4*4*1024, out_features=4*4*1024),
nn.LeakyReLU(),
nn.BatchNorm1d(num_features=4*4*1024),
nn.Unflatten(1, (1024, 4, 4)),
nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.BatchNorm2d(num_features=512),
nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.BatchNorm2d(num_features=256),
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.BatchNorm2d(num_features=128),
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.BatchNorm2d(num_features=64),
nn.ConvTranspose2d(in_channels=64, out_channels=3, kernel_size=1, stride=1, padding=0),
nn.Tanh(),
)
def forward(self, noise, labels):
# Concatenate label embedding and image to produce input
gen_input = torch.cat((labels, noise), -1)
img = self.model(gen_input)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
#self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)
self.model = nn.Sequential(
nn.Conv2d(in_channels=13, out_channels=32, kernel_size=5),
nn.LeakyReLU(negative_slope=0.01),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=2, stride=2),
nn.LeakyReLU(negative_slope=0.01),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5),
nn.LeakyReLU(negative_slope=0.01),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=2, stride=2),
nn.LeakyReLU(negative_slope=0.01),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=6),
nn.LeakyReLU(negative_slope=0.01),
nn.Flatten(),
nn.Linear(in_features=8*8*128, out_features=4*4*64),
nn.Dropout(0.7),
nn.LeakyReLU(negative_slope=0.01),
nn.Linear(in_features=4*4*64, out_features=1)
)
def forward(self, img, labels):
# Concatenate label embedding and image to produce input
if len(labels.shape) > 2:
new_labels = torch.stack([labels.permute(1,3,0,2).squeeze() for _ in range(opt.batch_size)])
else:
new_labels = torch.stack([torch.stack([labels for a in range(opt.img_size)]) for b in range(opt.img_size)]).permute((2,3,0,1)).type(FloatTensor)
d_in = torch.cat((img, new_labels), 1) #self.label_embedding(labels)
validity = self.model(d_in)
return validity
# Loss functions
adversarial_loss = torch.nn.MSELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Reclean Data
x = 1
data = np.load('/content/gdrive/MyDrive/spd_train.npy', allow_pickle=True).item()
while x != 0:
x = 0
for idx, img in enumerate(data['data']):
if img.shape != (64, 64, 3):
x +=1
del data['data'][idx]
del data['names'][idx]
del data['labels'][idx]
print(x)
data['data'] = data['data'][0:640000]
data['names'] = data['names'][0:640000]
data['labels'] = data['labels'][0:640000]
# Optimizers
#optimizer_G = torch.optim.RMSprop(generator.parameters(), lr=opt.lr)
#optimizer_D = torch.optim.RMSprop(discriminator.parameters(), lr=opt.lr)
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def label_generator(num_labels):
#idxs = np.random.randint(0, len(data['labels']), num_labels)
#entries = [data['labels'][i] for i in idxs]
entries=[]
for i in range(num_labels):
entry = []
entry.append(np.random.randint(0, high=100)) #popularity
entry.append(np.random.random()) #acousticness
entry.append(np.random.random()) #danceability
entry.append(np.random.random()) #energy
entry.append(np.random.random()) #instrumentalness
entry.append(np.random.random()) #liveleness
entry.append(np.random.randint(-60, high=0)) # loudness
entry.append(np.random.random()) # speechiness
entry.append(np.random.randint(50, high=200)) # tempo
entry.append(np.random.random()) # valence
entries.append(entry)
return Variable(LongTensor(np.array(entries)))
def sample_image(n_row, batches_done, tbx):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
n_row = 5
# Sample noise
z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
# Get labels ranging from 0 to n_classes for n rows
labels = label_generator(n_row**2)
gen_imgs = ((generator(z, labels) + 1)/2) * 255
tbx.add_images("images/%d.png" % batches_done, gen_imgs, batches_done)
save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
def compute_gradient_penalty(D, real_samples, fake_samples, real_labels, fake_labels):
"""Calculates the gradient penalty loss for WGAN GP"""
try:
# Random weight term for interpolation between real and fake samples
alpha = torch.tensor(np.random.random((real_samples.size(0), 1, 1, 1))).to(device='cuda')
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True).type(FloatTensor)
interpolates_labels = (alpha * real_labels + ((1 - alpha) * fake_labels)).requires_grad_(True).type(FloatTensor)
d_interpolates = D(interpolates, interpolates_labels)
fake = Variable(torch.zeros((opt.batch_size,1)).fill_(1.0), requires_grad=False).to(device='cuda')
# Get gradient w.r.t. interpolates
gradients = torch.autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
except:
gradient_penalty = 0
return gradient_penalty
def lat_opt_ngd(G,D,z,labels, batch_size, alpha=500, beta=0.1, norm=1000):
x_hat = G(z, labels)
f_z = D(x_hat.view(batch_size, 3, 64, 64), labels)
fz_dz = torch.autograd.grad(outputs=f_z,
inputs= z,
grad_outputs=torch.ones_like(f_z),
retain_graph=True,
create_graph= True
)[0]
delta_z = torch.ones_like(fz_dz)
delta_z = (alpha * fz_dz) / (beta + torch.norm(delta_z, p=2, dim=0) / norm).to(device='cuda')
with torch.no_grad():
z_prime = torch.clamp(z + delta_z, min=-1, max=1)
return z_prime
def sample_noise(batch_size, dim):
return Variable(2 * torch.rand([batch_size, dim]) - 1, requires_grad=True)
def diversity(imgs):
score = 0
for target in imgs:
for sample in imgs:
#score += torch.mean(torch.abs(target - sample))
score += torch.sum((target == sample) * 1)/64
return score/(64**2)
if cuda:
generator.cuda()
discriminator.cuda()
# ----------
# Training
# ----------
batch_size = opt.batch_size
for epoch in range(opt.n_epochs):
for i in range(0, len(data['names']), batch_size):
# Get further data
imgs = []
for idx, img in enumerate(data['data'][i: i+batch_size]):
imgs.append(torch.from_numpy((((img.transpose(-1, 0, 1))/255)-0.5) * 2))
imgs = torch.stack(imgs)
labels = torch.from_numpy(np.array(data['labels'][i:i+batch_size]))
# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = Variable(labels.type(FloatTensor))
# -----------------
# Train D
# -----------------
optimizer_D.zero_grad()
z = Variable(sample_noise(batch_size, opt.latent_dim), requires_grad=True).to(device='cuda')
gen_labels = label_generator(batch_size).to(device='cuda')
z = lat_opt_ngd(generator, discriminator, z, gen_labels, batch_size)
# Generate a batch of images
gen_imgs = generator(z, gen_labels).detach().to(device='cuda')
# Loss measures generator's ability to fool the discriminator
d_loss = -torch.mean(discriminator(real_imgs, labels).to(device='cuda')) + torch.mean(discriminator(gen_imgs, gen_labels).to(device='cuda')) #+ compute_gradient_penalty(discriminator, real_imgs.data, gen_imgs.data, labels, gen_labels) * 10
d_loss.backward()
optimizer_D.step()
for p in discriminator.parameters():
p.data.clamp_(-opt.clip_value, opt.clip_value)
# ---------------------
# Train G
# ---------------------
if i % opt.n_critic == 0:
optimizer_G.zero_grad()
# Generate images and labels
gen_imgs = generator(z, gen_labels).to(device='cuda')
gen_labels = label_generator(batch_size).to(device='cuda')
#TEST
#to_pil = transforms.ToPILImage()
#display(to_pil(real_imgs[0]))
#display(to_pil(gen_imgs[0]))
# Loss for generator
#div = diversity(gen_imgs)
g_loss = -torch.mean(discriminator(gen_imgs, gen_labels)) #+ div
g_loss.backward()
optimizer_G.step()
if i % opt.sample_interval == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(data['names']), d_loss.item(), g_loss.item()) #dataloader
)
batches_done = epoch * len(data['names']) + i
#Log info
tbx.add_scalars('Loss/train' + opt.name, {"Generator" : g_loss, "Discriminator": d_loss}, batches_done)
if batches_done % opt.sample_interval == 0:
torch.save(generator.state_dict(), 'generator.tar')
torch.save(discriminator.state_dict(), 'disriminator.tar')
sample_image(n_row=10, batches_done=batches_done, tbx=tbx)