Skip to content

Commit 224fd56

Browse files
authored
Documentation: fix dead links (#2936)
* fixed dead links * spellcheck correction
1 parent 3375053 commit 224fd56

File tree

6 files changed

+10
-9
lines changed

6 files changed

+10
-9
lines changed

README.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -55,14 +55,14 @@ docker pull pytorch/torchserve-nightly
5555
Refer to [torchserve docker](docker/README.md) for details.
5656

5757
## ⚡ Why TorchServe
58-
* Write once, run anywhere, on-prem, on-cloud, supports inference on CPUs, GPUs, AWS Inf1/Inf2/Trn1, Google Cloud TPUs, [Nvidia MPS](master/docs/nvidia_mps.md)
58+
* Write once, run anywhere, on-prem, on-cloud, supports inference on CPUs, GPUs, AWS Inf1/Inf2/Trn1, Google Cloud TPUs, [Nvidia MPS](docs/nvidia_mps.md)
5959
* [Model Management API](docs/management_api.md): multi model management with optimized worker to model allocation
6060
* [Inference API](docs/inference_api.md): REST and gRPC support for batched inference
6161
* [TorchServe Workflows](examples/Workflows/README.md): deploy complex DAGs with multiple interdependent models
6262
* Default way to serve PyTorch models in
6363
* [Sagemaker](https://aws.amazon.com/blogs/machine-learning/serving-pytorch-models-in-production-with-the-amazon-sagemaker-native-torchserve-integration/)
6464
* [Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai)
65-
* [Kubernetes](master/kubernetes) with support for [autoscaling](kubernetes#session-affinity-with-multiple-torchserve-pods), session-affinity, monitoring using Grafana works on-prem, AWS EKS, Google GKE, Azure AKS
65+
* [Kubernetes](kubernetes) with support for [autoscaling](kubernetes#session-affinity-with-multiple-torchserve-pods), session-affinity, monitoring using Grafana works on-prem, AWS EKS, Google GKE, Azure AKS
6666
* [Kserve](https://kserve.github.io/website/0.8/modelserving/v1beta1/torchserve/): Supports both v1 and v2 API, [autoscaling and canary deployments](kubernetes/kserve/README.md#autoscaling) for A/B testing
6767
* [Kubeflow](https://v0-5.kubeflow.org/docs/components/pytorchserving/)
6868
* [MLflow](https://github.com/mlflow/mlflow-torchserve)
@@ -71,11 +71,11 @@ Refer to [torchserve docker](docker/README.md) for details.
7171
* [Expressive handlers](CONTRIBUTING.md): An expressive handler architecture that makes it trivial to support inferencing for your use case with [many supported out of the box](https://github.com/pytorch/serve/tree/master/ts/torch_handler)
7272
* [Metrics API](docs/metrics.md): out-of-the-box support for system-level metrics with [Prometheus exports](https://github.com/pytorch/serve/tree/master/examples/custom_metrics), custom metrics,
7373
* [Large Model Inference Guide](docs/large_model_inference.md): With support for GenAI, LLMs including
74-
* [SOTA GenAI performance](https://github.com/pytorch/serve/tree/docs/master/examples/pt2#torchcompile-genai-examples) using `torch.compile`
74+
* [SOTA GenAI performance](https://github.com/pytorch/serve/tree/master/examples/pt2#torchcompile-genai-examples) using `torch.compile`
7575
* Fast Kernels with FlashAttention v2, continuous batching and streaming response
7676
* PyTorch [Tensor Parallel](examples/large_models/tp_llama) preview, [Pipeline Parallel](examples/large_models/Huggingface_pippy)
7777
* Microsoft [DeepSpeed](examples/large_models/deepspeed), [DeepSpeed-Mii](examples/large_models/deepspeed_mii)
78-
* Hugging Face [Accelerate](large_models/Huggingface_accelerate), [Diffusers](examples/diffusers)
78+
* Hugging Face [Accelerate](examples/large_models/Huggingface_accelerate), [Diffusers](examples/diffusers)
7979
* Running large models on AWS [Sagemaker](https://docs.aws.amazon.com/sagemaker/latest/dg/large-model-inference-tutorials-torchserve.html) and [Inferentia2](https://pytorch.org/blog/high-performance-llama/)
8080
* Running [Llama 2 Chatbot locally on Mac](examples/LLM/llama2)
8181
* Monitoring using Grafana and [Datadog](https://www.datadoghq.com/blog/ai-integrations/#model-serving-and-deployment-vertex-ai-amazon-sagemaker-torchserve)
@@ -114,7 +114,7 @@ To learn more about how to contribute, see the contributor guide [here](https://
114114
## 📰 News
115115
* [High performance Llama 2 deployments with AWS Inferentia2 using TorchServe](https://pytorch.org/blog/high-performance-llama/)
116116
* [Naver Case Study: Transition From High-Cost GPUs to Intel CPUs and oneAPI powered Software with performance](https://pytorch.org/blog/ml-model-server-resource-saving/)
117-
* [Run multiple generative AI models on GPU using Amazon SageMaker multi-model endpoints with TorchServe and save up to 75% in inference costs](https://aws.amazon.com/blogs/machine-learning/run-multiple-generative-ai-models-on-gpu-using-amazon-sagemaker-multi-model-endpoints-with-torchserve-and-save-up-to-75-in-inference-costs/)
117+
* [Run multiple generative AI models on GPU using Amazon SageMaker multi-model endpoints with TorchServe and save up to 75% in inference costs](https://pytorch.org/blog/amazon-sagemaker-w-torchserve/)
118118
* [Deploying your Generative AI model in only four steps with Vertex AI and PyTorch](https://cloud.google.com/blog/products/ai-machine-learning/get-your-genai-model-going-in-four-easy-steps)
119119
* [PyTorch Model Serving on Google Cloud TPU v5](https://cloud.google.com/tpu/docs/v5e-inference#pytorch-model-inference-and-serving)
120120
* [Monitoring using Datadog](https://www.datadoghq.com/blog/ai-integrations/#model-serving-and-deployment-vertex-ai-amazon-sagemaker-torchserve)

benchmarks/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ The benchmarks measure the performance of TorchServe on various models and bench
44

55
We currently support benchmarking with JMeter, Apache Bench and Locust. One can also profile backend code with snakeviz.
66

7-
* [Benchmarking with Apache Bench](#benchmarking-with-apache-bench)
7+
* [Benchmarking with Locust/Apache Bench](#benchmarking-with-locustapache-bench)
88
* [Auto Benchmarking with Apache Bench](#auto-benchmarking-with-apache-bench)
99
* [Benchmarking and Profiling with JMeter](jmeter.md)
1010

docs/Troubleshooting.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Refer to this section for common issues faced while deploying your Pytorch model
33

44
* [Deployment and config issues](#deployment-and-config-issues)
55
* [Snapshot related issues](#snapshot-related-issues)
6-
* [API related issues](#api-relate-issues)
6+
* [API related issues](#api-related-issues)
77
* [Model-archiver](#model-archiver)
88

99

docs/performance_guide.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ Models which have been fully optimized with `torch.compile` show performance imp
1717

1818
You can find all the examples of `torch.compile` with TorchServe [here](https://github.com/pytorch/serve/tree/master/examples/pt2)
1919

20-
Details regarding `torch.compile` GenAI examples can be found in this [link](https://github.com/pytorch/serve/tree/docs/master/examples/pt2#torchcompile-genai-examples)
20+
Details regarding `torch.compile` GenAI examples can be found in this [link](https://github.com/pytorch/serve/tree/master/examples/pt2#torchcompile-genai-examples)
2121

2222
<h4>ONNX and ORT support</h4>
2323

examples/pt2/torch_export_aot_compile/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
This example shows how to run TorchServe with Torch exported model with AOTInductor
44

5-
To understand when to use `torch._export.aot_compile`, please refer to this [section](../README.md/#torchexportaotcompile)
5+
To understand when to use `torch._export.aot_compile`, please refer to this [section](https://github.com/pytorch/serve/tree/master/examples/pt2#torch_exportaot_compile)
66

77

88
### Pre-requisites

ts_scripts/spellcheck_conf/wordlist.txt

+1
Original file line numberDiff line numberDiff line change
@@ -1181,3 +1181,4 @@ Karpathy's
11811181
Maher's
11821182
warmup
11831183
SOTA
1184+
locustapache

0 commit comments

Comments
 (0)