-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
executable file
·33 lines (25 loc) · 1001 Bytes
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python
import argparse
import time
import string
import re
import pandas as pd
from classifiers import load_model
from classifiers.naive_bayes import nb_classify
def parse():
parser = argparse.ArgumentParser(description='Generate predictions from models for test data and output results to csv.')
parser.add_argument('-test', metavar='path_to_file', default='data/Test.csv', help='specify Test csv file')
parser.add_argument('-p', metavar='path_to_file', default='data/Pred.csv', help='specify Pred csv file')
return parser.parse_args()
def main():
args = parse()
# Load test data
test = pd.read_csv(args.test, usecols=['Id', 'Title'])
# Generate predictions and write to csv
keywords = load_model('keywords')
pred = nb_classify(test, keywords)
pred.to_csv(args.p, columns=['Id', 'Tags'], index=False)
if __name__ == '__main__':
start = time.time()
main()
print 'Program runtime: {0:.3f}s'.format(time.time() - start)