-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_estimator.py
246 lines (213 loc) · 9.67 KB
/
train_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import argparse
import json
import pandas as pd
# import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from deepctr.estimator import *
from deepctr.estimator.inputs import input_fn_pandas
def get_integer_mapping(le):
'''
Return a dict mapping labels to their integer values from an SKlearn LabelEncoder
le = a fitted SKlearn LabelEncoder
'''
res = {}
for idx, val in enumerate(le.classes_):
res.update({val:idx})
return res
def main(model_dir, data_dir, train_steps, model_name, task, **kwargs):
print(kwargs)
data = pd.read_csv(os.path.join(data_dir, 'criteo_sample.txt'))
sparse_features = ['C' + str(i) for i in range(1, 27)]
dense_features = ['I' + str(i) for i in range(1, 14)]
data[sparse_features] = data[sparse_features].fillna('-1', )
data[dense_features] = data[dense_features].fillna(0, )
target = ['label']
# 1.Label Encoding for sparse features,and do simple Transformation for dense features
feat_index_dict = {}
for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])
feat_index_dict.update({feat:get_integer_mapping(lbe)})
# save category features index for serving stage
with open(os.path.join(model_dir, "feat_index_dict.json"), 'w') as fo:
json.dump(feat_index_dict, fo)
# save min max value for each dense feature
s_max,s_min = data[dense_features].max(axis=0),data[dense_features].min(axis=0)
pd.concat([s_max, s_min],keys=['max','min'],axis=1).to_csv(os.path.join(model_dir, 'max_min.txt'), sep='\t')
mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])
# 2.count #unique features for each sparse field,and record dense feature field name
dnn_feature_columns = []
linear_feature_columns = []
for i, feat in enumerate(sparse_features):
dnn_feature_columns.append(tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_identity(feat, data[feat].nunique()), 4))
linear_feature_columns.append(tf.feature_column.categorical_column_with_identity(feat, data[feat].nunique()))
for feat in dense_features:
dnn_feature_columns.append(tf.feature_column.numeric_column(feat))
linear_feature_columns.append(tf.feature_column.numeric_column(feat))
# 3.generate input data for model
train, test = train_test_split(data, test_size=0.2, random_state=2020)
# Not setting default value for continuous feature. filled with mean.
train_model_input = input_fn_pandas(train,sparse_features+dense_features,'label',shuffle=True)
test_model_input = input_fn_pandas(test,sparse_features+dense_features,None,shuffle=False)
# 4.Define Model,train,predict and evaluate
if model_name == 'DeepFM':
model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=kwargs['dnn_hidden_units'], l2_reg_linear=kwargs['l2_reg_linear'], l2_reg_embedding=kwargs['l2_reg_embedding'], l2_reg_dnn=kwargs['l2_reg_dnn'], seed=kwargs['seed'], dnn_dropout=kwargs['dnn_dropout'], dnn_activation=kwargs['dnn_activation'], dnn_use_bn=kwargs['dnn_use_bn'], task=task)
elif model_name == 'FNN':
model = FNNEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'WDL':
model = WDLEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'NFM':
model = NFMEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'CCPM':
model = CCPMEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'PNN':
model = PNNEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'AFM':
model = AFMEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'DCN':
model = DCNEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'xDeepFM':
model = xDeepFMEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'AutoInt':
model = AutoIntEstimator(linear_feature_columns, dnn_feature_columns, task=task)
elif model_name == 'FiBiNET':
model = FiBiNETEstimator(linear_feature_columns, dnn_feature_columns, task=task)
else:
print(model_name+' is not supported now.')
return
model.train(train_model_input)
pred_ans_iter = model.predict(test_model_input)
pred_ans = list(map(lambda x: x['pred'], pred_ans_iter))
try:
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
except Exception as e:
print(e)
try:
print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))
except Exception as e:
print(e)
# model.save_weights(os.path.join(model_dir, 'DeepFM_w.h5'))
# 5.saved Model by build_raw_serving_input ,generate model in export_path
def serving_input_receiver_fn():
feature_map = {}
for i in range(len(sparse_features)):
feature_map[sparse_features[i]] = tf.placeholder(tf.int32,shape=(None, ),name='{}'.format(sparse_features[i]))
for i in range(len(dense_features)):
feature_map[dense_features[i]] = tf.placeholder(tf.float32,shape=(None, ),name='{}'.format(dense_features[i]))
return tf.estimator.export.build_raw_serving_input_receiver_fn(feature_map)
model.export_saved_model(export_dir_base=os.path.join(model_dir, 'export/Servo'), serving_input_receiver_fn=serving_input_receiver_fn())
if __name__ == "__main__":
args_parser = argparse.ArgumentParser()
# For more information:
# https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html
args_parser.add_argument(
'--data_dir',
default='/opt/ml/input/data/training',
type=str,
help='The directory where the input data is stored. Default: /opt/ml/input/data/training. This '
'directory corresponds to the SageMaker channel named \'training\', which was specified when creating '
'our training job on SageMaker')
# For more information:
# https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html
args_parser.add_argument(
'--model_dir',
default='/opt/ml/model',
type=str,
help='The directory where the model will be stored. Default: /opt/ml/model. This directory should contain all '
'final model artifacts as Amazon SageMaker copies all data within this directory as a single object in '
'compressed tar format.')
args_parser.add_argument(
'--train_steps',
type=int,
default=100,
help='The number of steps to use for training.')
args_parser.add_argument(
'--model_name',
default='DeepFM',
type=str,
help='Models: CCPM, FNN, PNN, WDL, DeepFM, NFM, AFM, DCN, xDeepFM, AutoInt, FiBiNET.')
args_parser.add_argument(
'--task',
default='binary',
type=str,
help='"binary" for binary logloss or "regression" for regression loss')
# hyperparameters
args_parser.add_argument(
'--fm_group',
default=['default_group'],
type=list,
help='group_name of features that will be used to do feature interactions.')
args_parser.add_argument(
'--dnn_hidden_units',
default=(128, 128),
type=list,
help='list of positive integer or empty list, the layer number and units in each layer of DNN')
args_parser.add_argument(
'--cross_num',
default=2,
type=int,
help='positive integet,cross layer number')
args_parser.add_argument(
'--cross_parameterization',
default='vector',
type=str,
help='"vector" or "matrix", how to parameterize the cross network.')
args_parser.add_argument(
'--l2_reg_cross',
default=1e-5,
type=float,
help='L2 regularizer strength applied to cross net')
args_parser.add_argument(
'--l2_reg_linear',
default=1e-05,
type=float,
help='L2 regularizer strength applied to linear part')
args_parser.add_argument(
'--l2_reg_embedding',
default=1e-05,
type=float,
help='L2 regularizer strength applied to embedding vector')
args_parser.add_argument(
'--l2_reg_dnn',
default=0,
type=float,
help='L2 regularizer strength applied to DNN')
args_parser.add_argument(
'--seed',
default=1024,
type=int,
help='to use as random seed.')
args_parser.add_argument(
'--dnn_dropout',
default=0,
type=float,
help='float in [0,1), the probability we will drop out a given DNN coordinate.')
args_parser.add_argument(
'--dnn_activation',
default='relu',
type=str,
help='Activation function to use in DNN')
args_parser.add_argument(
'--dnn_use_bn',
default=False,
type=bool,
help='Whether use BatchNormalization before activation or not in DNN')
args_parser.add_argument(
'--low_rank',
default=32,
type=int,
help='Positive integer, dimensionality of low-rank sapce.')
args_parser.add_argument(
'--num_experts',
default=4,
type=int,
help='Positive integer, number of experts.')
args = args_parser.parse_args()
main(**vars(args))