Skip to content

WWW 2018: Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications

Notifications You must be signed in to change notification settings

NetManAIOps/donut

Folders and files

NameName
Last commit message
Last commit date

Latest commit

c8a44d9 · Mar 6, 2019

History

20 Commits
Jul 20, 2018
Sep 6, 2018
Jul 20, 2018
May 11, 2018
Dec 27, 2017
May 22, 2018
Mar 6, 2019
Jun 12, 2018
Mar 6, 2019
May 22, 2018

Repository files navigation

DONUT

https://travis-ci.org/haowen-xu/donut.svg?branch=master https://coveralls.io/repos/github/haowen-xu/donut/badge.svg?branch=master

Donut is an anomaly detection algorithm for seasonal KPIs.

Citation

@inproceedings{donut,
  title={Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications},
  author={Xu, Haowen and Chen, Wenxiao and Zhao, Nengwen and Li, Zeyan and Bu, Jiahao and Li, Zhihan and Liu, Ying and Zhao, Youjian and Pei, Dan and Feng, Yang and others},
  booktitle={Proceedings of the 2018 World Wide Web Conference on World Wide Web},
  pages={187--196},
  year={2018},
  organization={International World Wide Web Conferences Steering Committee}
}

Dependencies

TensorFlow >= 1.5

Installation

Checkout this repository and execute:

pip install git+https://github.com/thu-ml/zhusuan.git
pip install git+https://github.com/haowen-xu/tfsnippet.git@v0.1.2
pip install .

This will first install ZhuSuan and TFSnippet, the two major dependencies of Donut, then install the Donut package itself.

API Usage

To prepare the data:

import numpy as np
from donut import complete_timestamp, standardize_kpi

# Read the raw data.
timestamp, values, labels = ...
# If there is no label, simply use all zeros.
labels = np.zeros_like(values, dtype=np.int32)

# Complete the timestamp, and obtain the missing point indicators.
timestamp, missing, (values, labels) = \
    complete_timestamp(timestamp, (values, labels))

# Split the training and testing data.
test_portion = 0.3
test_n = int(len(values) * test_portion)
train_values, test_values = values[:-test_n], values[-test_n:]
train_labels, test_labels = labels[:-test_n], labels[-test_n:]
train_missing, test_missing = missing[:-test_n], missing[-test_n:]

# Standardize the training and testing data.
train_values, mean, std = standardize_kpi(
    train_values, excludes=np.logical_or(train_labels, train_missing))
test_values, _, _ = standardize_kpi(test_values, mean=mean, std=std)

To construct a Donut model:

import tensorflow as tf
from donut import Donut
from tensorflow import keras as K
from tfsnippet.modules import Sequential

# We build the entire model within the scope of `model_vs`,
# it should hold exactly all the variables of `model`, including
# the variables created by Keras layers.
with tf.variable_scope('model') as model_vs:
    model = Donut(
        h_for_p_x=Sequential([
            K.layers.Dense(100, kernel_regularizer=K.regularizers.l2(0.001),
                           activation=tf.nn.relu),
            K.layers.Dense(100, kernel_regularizer=K.regularizers.l2(0.001),
                           activation=tf.nn.relu),
        ]),
        h_for_q_z=Sequential([
            K.layers.Dense(100, kernel_regularizer=K.regularizers.l2(0.001),
                           activation=tf.nn.relu),
            K.layers.Dense(100, kernel_regularizer=K.regularizers.l2(0.001),
                           activation=tf.nn.relu),
        ]),
        x_dims=120,
        z_dims=5,
    )

To train the Donut model, and use a trained model for prediction:

from donut import DonutTrainer, DonutPredictor

trainer = DonutTrainer(model=model, model_vs=model_vs)
predictor = DonutPredictor(model)

with tf.Session().as_default():
    trainer.fit(train_values, train_labels, train_missing, mean, std)
    test_score = predictor.get_score(test_values, test_missing)

To save and restore a trained model:

from tfsnippet.utils import get_variables_as_dict, VariableSaver

with tf.Session().as_default():
    # Train the model.
    ...

    # Remember to get the model variables after the birth of a
    # `predictor` or a `trainer`.  The :class:`Donut` instances
    # does not build the graph until :meth:`Donut.get_score` or
    # :meth:`Donut.get_training_loss` is called, which is
    # done in the `predictor` or the `trainer`.
    var_dict = get_variables_as_dict(model_vs)

    # save variables to `save_dir`
    saver = VariableSaver(var_dict, save_dir)
    saver.save()

with tf.Session().as_default():
    # Restore variables from `save_dir`.
    saver = VariableSaver(get_variables_as_dict(model_vs), save_dir)
    saver.restore()

If you need more advanced outputs from the model, you may derive the outputs by using model.vae directly, for example:

from donut import iterative_masked_reconstruct

# Obtain the reconstructed `x`, with MCMC missing data imputation.
# See also:
#   :meth:`donut.Donut.get_score`
#   :func:`donut.iterative_masked_reconstruct`
#   :meth:`tfsnippet.modules.VAE.reconstruct`
input_x = ...  # 2-D `float32` :class:`tf.Tensor`, input `x` windows
input_y = ...  # 2-D `int32` :class:`tf.Tensor`, missing point indicators
               # for the `x` windows
x = model.vae.reconstruct(
    iterative_masked_reconstruct(
        reconstruct=model.vae.reconstruct,
        x=input_x,
        mask=input_y,
        iter_count=mcmc_iteration,
        back_prop=False
    )
)
# `x` is a :class:`tfsnippet.stochastic.StochasticTensor`, from which
# you may derive many useful outputs, for example:
x.tensor  # the `x` samples
x.log_prob(group_ndims=0)  # element-wise log p(x|z) of sampled x
x.distribution.log_prob(input_x)  # the reconstruction probability
x.distribution.mean, x.distribution.std  # mean and std of p(x|z)

About

WWW 2018: Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages