|
| 1 | +#import sys |
| 2 | +#sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') |
| 3 | + |
| 4 | +import cv2 |
| 5 | +import numpy as np |
| 6 | +from collections import deque |
| 7 | +import gym |
| 8 | +from gym import spaces |
| 9 | + |
| 10 | + |
| 11 | +class NoopResetEnv(gym.Wrapper): |
| 12 | + def __init__(self, env=None, noop_max=30): |
| 13 | + """Sample initial states by taking random number of no-ops on reset. |
| 14 | + No-op is assumed to be action 0. |
| 15 | + """ |
| 16 | + super(NoopResetEnv, self).__init__(env) |
| 17 | + self.noop_max = noop_max |
| 18 | + assert env.unwrapped.get_action_meanings()[0] == 'NOOP' |
| 19 | + |
| 20 | + def _reset(self): |
| 21 | + """ Do no-op action for a number of steps in [1, noop_max].""" |
| 22 | + self.env.reset() |
| 23 | + noops = np.random.randint(1, self.noop_max + 1) |
| 24 | + for _ in range(noops): |
| 25 | + obs, _, _, _ = self.env.step(0) |
| 26 | + return obs |
| 27 | + |
| 28 | +class FireResetEnv(gym.Wrapper): |
| 29 | + def __init__(self, env=None): |
| 30 | + """Take action on reset for environments that are fixed until firing.""" |
| 31 | + super(FireResetEnv, self).__init__(env) |
| 32 | + assert env.unwrapped.get_action_meanings()[1] == 'FIRE' |
| 33 | + assert len(env.unwrapped.get_action_meanings()) >= 3 |
| 34 | + |
| 35 | + def _reset(self): |
| 36 | + self.env.reset() |
| 37 | + obs, _, _, _ = self.env.step(1) |
| 38 | + obs, _, _, _ = self.env.step(2) |
| 39 | + return obs |
| 40 | + |
| 41 | +class EpisodicLifeEnv(gym.Wrapper): |
| 42 | + def __init__(self, env=None): |
| 43 | + """Make end-of-life == end-of-episode, but only reset on true game over. |
| 44 | + Done by DeepMind for the DQN and co. since it helps value estimation. |
| 45 | + """ |
| 46 | + super(EpisodicLifeEnv, self).__init__(env) |
| 47 | + self.lives = 0 |
| 48 | + self.was_real_done = True |
| 49 | + self.was_real_reset = False |
| 50 | + |
| 51 | + def _step(self, action): |
| 52 | + obs, reward, done, info = self.env.step(action) |
| 53 | + self.was_real_done = done |
| 54 | + # check current lives, make loss of life terminal, |
| 55 | + # then update lives to handle bonus lives |
| 56 | + lives = self.env.unwrapped.ale.lives() |
| 57 | + if lives < self.lives and lives > 0: |
| 58 | + # for Qbert somtimes we stay in lives == 0 condtion for a few frames |
| 59 | + # so its important to keep lives > 0, so that we only reset once |
| 60 | + # the environment advertises done. |
| 61 | + done = True |
| 62 | + self.lives = lives |
| 63 | + return obs, reward, done, info |
| 64 | + |
| 65 | + def _reset(self): |
| 66 | + """Reset only when lives are exhausted. |
| 67 | + This way all states are still reachable even though lives are episodic, |
| 68 | + and the learner need not know about any of this behind-the-scenes. |
| 69 | + """ |
| 70 | + if self.was_real_done: |
| 71 | + obs = self.env.reset() |
| 72 | + self.was_real_reset = True |
| 73 | + else: |
| 74 | + # no-op step to advance from terminal/lost life state |
| 75 | + obs, _, _, _ = self.env.step(0) |
| 76 | + self.was_real_reset = False |
| 77 | + self.lives = self.env.unwrapped.ale.lives() |
| 78 | + return obs |
| 79 | + |
| 80 | +class MaxAndSkipEnv(gym.Wrapper): |
| 81 | + def __init__(self, env=None, skip=4): |
| 82 | + """Return only every `skip`-th frame""" |
| 83 | + super(MaxAndSkipEnv, self).__init__(env) |
| 84 | + # most recent raw observations (for max pooling across time steps) |
| 85 | + self._obs_buffer = deque(maxlen=2) |
| 86 | + self._skip = skip |
| 87 | + |
| 88 | + def _step(self, action): |
| 89 | + total_reward = 0.0 |
| 90 | + done = None |
| 91 | + for _ in range(self._skip): |
| 92 | + obs, reward, done, info = self.env.step(action) |
| 93 | + self._obs_buffer.append(obs) |
| 94 | + total_reward += reward |
| 95 | + if done: |
| 96 | + break |
| 97 | + |
| 98 | + max_frame = np.max(np.stack(self._obs_buffer), axis=0) |
| 99 | + |
| 100 | + return max_frame, total_reward, done, info |
| 101 | + |
| 102 | + def _reset(self): |
| 103 | + """Clear past frame buffer and init. to first obs. from inner env.""" |
| 104 | + self._obs_buffer.clear() |
| 105 | + obs = self.env.reset() |
| 106 | + self._obs_buffer.append(obs) |
| 107 | + return obs |
| 108 | + |
| 109 | +def _process_frame84(frame): |
| 110 | + img = np.reshape(frame, [210, 160, 3]).astype(np.float32) |
| 111 | + img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114 |
| 112 | + resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_LINEAR) |
| 113 | + x_t = resized_screen[18:102, :] |
| 114 | + x_t = np.reshape(x_t, [84, 84, 1]) |
| 115 | + return x_t.astype(np.uint8) |
| 116 | + |
| 117 | +class ProcessFrame84(gym.Wrapper): |
| 118 | + def __init__(self, env=None): |
| 119 | + super(ProcessFrame84, self).__init__(env) |
| 120 | + self.observation_space = spaces.Box(low=0, high=255, shape=(84, 84, 1)) |
| 121 | + |
| 122 | + def _step(self, action): |
| 123 | + obs, reward, done, info = self.env.step(action) |
| 124 | + return _process_frame84(obs), reward, done, info |
| 125 | + |
| 126 | + def _reset(self): |
| 127 | + return _process_frame84(self.env.reset()) |
| 128 | + |
| 129 | +class ClippedRewardsWrapper(gym.Wrapper): |
| 130 | + def _step(self, action): |
| 131 | + obs, reward, done, info = self.env.step(action) |
| 132 | + return obs, np.sign(reward), done, info |
| 133 | + |
| 134 | +def wrap_deepmind_ram(env): |
| 135 | + env = EpisodicLifeEnv(env) |
| 136 | + env = NoopResetEnv(env, noop_max=30) |
| 137 | + env = MaxAndSkipEnv(env, skip=4) |
| 138 | + if 'FIRE' in env.unwrapped.get_action_meanings(): |
| 139 | + env = FireResetEnv(env) |
| 140 | + env = ClippedRewardsWrapper(env) |
| 141 | + return env |
| 142 | + |
| 143 | +def wrap_deepmind(env): |
| 144 | + assert 'NoFrameskip' in env.spec.id |
| 145 | + env = EpisodicLifeEnv(env) |
| 146 | + env = NoopResetEnv(env, noop_max=30) |
| 147 | + env = MaxAndSkipEnv(env, skip=4) |
| 148 | + if 'FIRE' in env.unwrapped.get_action_meanings(): |
| 149 | + env = FireResetEnv(env) |
| 150 | + env = ProcessFrame84(env) |
| 151 | + env = ClippedRewardsWrapper(env) |
| 152 | + return env |
0 commit comments