Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

conditionner: suport sdxl embedddings #621

Merged
merged 1 commit into from
Mar 9, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 44 additions & 16 deletions conditioner.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,8 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {

std::string trigger_word = "img"; // should be user settable
std::string embd_dir;
int32_t num_custom_embeddings = 0;
int32_t num_custom_embeddings = 0;
int32_t num_custom_embeddings_2 = 0;
std::vector<uint8_t> token_embed_custom;
std::vector<std::string> readed_embeddings;

Expand Down Expand Up @@ -131,28 +132,55 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
params.no_alloc = false;
struct ggml_context* embd_ctx = ggml_init(params);
struct ggml_tensor* embd = NULL;
int64_t hidden_size = text_model->model.hidden_size;
struct ggml_tensor* embd2 = NULL;
auto on_load = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) {
if (tensor_storage.ne[0] != hidden_size) {
LOG_DEBUG("embedding wrong hidden size, got %i, expected %i", tensor_storage.ne[0], hidden_size);
return false;
if (tensor_storage.ne[0] != text_model->model.hidden_size) {
if (text_model2) {
if (tensor_storage.ne[0] == text_model2->model.hidden_size) {
embd2 = ggml_new_tensor_2d(embd_ctx, tensor_storage.type, text_model2->model.hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1);
*dst_tensor = embd2;
} else {
LOG_DEBUG("embedding wrong hidden size, got %i, expected %i or %i", tensor_storage.ne[0], text_model->model.hidden_size, text_model2->model.hidden_size);
return false;
}
} else {
LOG_DEBUG("embedding wrong hidden size, got %i, expected %i", tensor_storage.ne[0], text_model->model.hidden_size);
return false;
}
} else {
embd = ggml_new_tensor_2d(embd_ctx, tensor_storage.type, text_model->model.hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1);
*dst_tensor = embd;
}
embd = ggml_new_tensor_2d(embd_ctx, tensor_storage.type, hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1);
*dst_tensor = embd;
return true;
};
model_loader.load_tensors(on_load, NULL);
readed_embeddings.push_back(embd_name);
token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd));
memcpy((void*)(token_embed_custom.data() + num_custom_embeddings * hidden_size * ggml_type_size(embd->type)),
embd->data,
ggml_nbytes(embd));
for (int i = 0; i < embd->ne[1]; i++) {
bpe_tokens.push_back(text_model->model.vocab_size + num_custom_embeddings);
// LOG_DEBUG("new custom token: %i", text_model.vocab_size + num_custom_embeddings);
num_custom_embeddings++;
if (embd) {
int64_t hidden_size = text_model->model.hidden_size;
token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd));
memcpy((void*)(token_embed_custom.data() + num_custom_embeddings * hidden_size * ggml_type_size(embd->type)),
embd->data,
ggml_nbytes(embd));
for (int i = 0; i < embd->ne[1]; i++) {
bpe_tokens.push_back(text_model->model.vocab_size + num_custom_embeddings);
// LOG_DEBUG("new custom token: %i", text_model.vocab_size + num_custom_embeddings);
num_custom_embeddings++;
}
LOG_DEBUG("embedding '%s' applied, custom embeddings: %i", embd_name.c_str(), num_custom_embeddings);
}
if (embd2) {
int64_t hidden_size = text_model2->model.hidden_size;
token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd2));
memcpy((void*)(token_embed_custom.data() + num_custom_embeddings_2 * hidden_size * ggml_type_size(embd2->type)),
embd2->data,
ggml_nbytes(embd2));
for (int i = 0; i < embd2->ne[1]; i++) {
bpe_tokens.push_back(text_model2->model.vocab_size + num_custom_embeddings_2);
// LOG_DEBUG("new custom token: %i", text_model.vocab_size + num_custom_embeddings);
num_custom_embeddings_2++;
}
LOG_DEBUG("embedding '%s' applied, custom embeddings: %i (text model 2)", embd_name.c_str(), num_custom_embeddings_2);
}
LOG_DEBUG("embedding '%s' applied, custom embeddings: %i", embd_name.c_str(), num_custom_embeddings);
return true;
}

Expand Down
Loading