conda create -y --prefix $(pwd)/.conda python=3.10
conda activate $(pwd)/.conda
pip install torch torchvision torchaudio
pip install git+https://github.com/huggingface/[email protected]
pip install accelerate python-dotenv matplotlib trimesh scipy omegaconf vllm
conda install -y -c conda-forge libstdcxx-ng
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
git checkout 42e090d38b986bbf989055851209f91565b69e89
pip install -e ".[torch,metrics]"
cd ..
pip install deepspeed liger-kernel
git clone https://huggingface.co/datasets/homebrewltd/voxel-representation downloaded_dataset
cp -r downloaded_dataset/test output/test
cp -r downloaded_dataset/test_100 output/test_100
export HF_HOME=$(pwd)/.hf_home
CUDA_VISIBLE_DEVICES=0 python inference_vllm.py --checkpoint-path homebrewltd/voxel-representation-gemma3-4b --input-dir output/test_100/image2d --output-filename output/test_100/model_prediction.jsonl
python data_visualization.py --data-path output/test_100 --example-id <id>
- id can be 0-99
python data_visualization.py --data-path output/test_100 --labels-file output/test_100/model_prediction.jsonl --example-id <id>
- id can be 0-99
export HF_HOME=$(pwd)/.hf_home
CUDA_VISIBLE_DEVICES=0 python inference_vllm.py --checkpoint-path homebrewltd/voxel-representation-gemma3-4b --input-dir output/test/image2d --output-filename output/test/model_prediction.jsonl
python data_eval.py --label output/test/labels.jsonl --output output/test/model_prediction.jsonl
Download ModelNet 40 Dataset
wget http://modelnet.cs.princeton.edu/ModelNet40.zip
unzip ModelNet40.zip
# edit your path to model net in config/data_train.yaml
cp config/data_train.example.yaml config/data_train.yaml
python data_generation.py
python process_data.py output/train
export HF_HOME=$(pwd)/.hf_home
DISABLE_VERSION_CHECK=1 llamafactory-cli train ./config/training_gemma3_pt_visual.yaml
python push_to_hub.py <username> <checkpoint_number> saves/gemma3-4b-pt/full/sft/checkpoint-1100