Skip to content

modaresimr/UnifiedAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

159b3b9 · Aug 24, 2023
May 19, 2022
May 19, 2022
May 19, 2022
Aug 19, 2022
Aug 15, 2022
Aug 24, 2023
Aug 19, 2022
May 19, 2022
Aug 5, 2022
Aug 19, 2022
Aug 19, 2022
Aug 15, 2022
Aug 19, 2022
Aug 19, 2022
Aug 15, 2022
Aug 15, 2022
May 19, 2022
Aug 19, 2022
May 19, 2022
May 19, 2022
May 19, 2022
Aug 15, 2022
May 19, 2022
Aug 15, 2022
Aug 15, 2022
May 19, 2022
May 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 15, 2022
Aug 19, 2022
May 19, 2022
Aug 5, 2022
Aug 15, 2022
Mar 22, 2023
Aug 19, 2022
May 19, 2022
May 19, 2022
Aug 19, 2022
May 19, 2022
May 19, 2022
Aug 15, 2022
May 19, 2022
Aug 19, 2022
Aug 19, 2022
May 19, 2022
May 19, 2022
May 19, 2022
Aug 15, 2022
May 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 19, 2022
Aug 15, 2022
Aug 5, 2022
Aug 15, 2022
Aug 19, 2022
Aug 5, 2022
Aug 15, 2022
Aug 5, 2022
Aug 5, 2022
Aug 15, 2022
May 19, 2022
Aug 19, 2022
May 19, 2022
May 19, 2022
May 19, 2022
Aug 19, 2022
Aug 19, 2022

Repository files navigation

MetaDecomposition_page-0001 MetaDecomposition_page-0002 MetaDecomposition_page-0003 MetaDecomposition_page-0004 MetaDecomposition_page-0005 MetaDecomposition_page-0006 MetaDecomposition_page-0007 MetaDecomposition_page-0008 MetaDecomposition_page-0009 MetaDecomposition_page-0010 MetaDecomposition_page-0011 MetaDecomposition_page-0012 MetaDecomposition_page-0013 MetaDecomposition_page-0014 MetaDecomposition_page-0015 MetaDecomposition_page-0016 MetaDecomposition_page-0017 MetaDecomposition_page-0018 MetaDecomposition_page-0019 MetaDecomposition_page-0020 MetaDecomposition_page-0021 MetaDecomposition_page-0022 MetaDecomposition_page-0023 MetaDecomposition_page-0024 MetaDecomposition_page-0025 MetaDecomposition_page-0026 MetaDecomposition_page-0027 MetaDecomposition_page-0028 MetaDecomposition_page-0029

DataSet

Dataset Format:

Object:

An object is a primitive object, a vector or in the form of a tuple of data components:
Object ={o|     o is Primitive or
                o=[o_1, ... , o_n] such that o_i is Object(Vector of object) or
                o=(Prop_1, ... , Prop_n) forall i in {1...n}, Prop_i(o) is Object}

Time Object:

Time might be a point, in case of an instantaneous event, or an interval during if it is durative. Supported durative time is range.

time | [start_time:end_time]

Event:

Type Actor Time

Sensor Events:

(Type, Value) SensorId Time

Activity Events:

ActivityId ActorId Time

DataInformation:

Sensor Info

Id Name Cumulative OnChange Nominal Range Location Object Sensor

Activity Info

Id Name

File format: CSV

Sensor Info:

Id Name Cumulative OnChange Nominal Range Location Object Sensor
int string bool bool bool json {min,max}/{items} string string string
in case of nominal sensors, the range contain items and for numeric sensors, the range contain min and max

Sensor events:

Type Value SensorId Time

Activity events:

ActivityId ActorId StartTime EndTime

Approaches

\begin{Example}[Different Segmentation approaches] \end{Example} \begin{lstlisting}[mathescape=true] function Fixed time window(S,X,r,l) {//S=SegmentHistory, X=Events, //r=Shift, l=windowLength p=begin(S[last]) return X.eventsIn([p + r : p + r + l]); } function Fixed siding window(S,X,r,l) { prev_w=S[last]; p=begin(S[last]) be=first({e \in X| p + r time(e)} return X.eventsIn([be : be + l]); } function Significant events(S,X,m) {//m=significant events per segments se=significantEvents(X) X begin=time(se[1]);//next significant event end=time(se[1 + m]); return X.eventsIn([begin:end]); } //Probabilistic Approach given:(By analyzing training set) w s ( A m ) is average window size of activity A m w 1 = m i n w s ( A 1 ) , w s ( A 2 ) , . . . , w s ( A M ) w L = m e d i a n w s ( A 1 ) , w s ( A 2 ) , . . . , w s ( A M ) w l = ( w L w 1 ) × l / L + w 1 w i n d o w s i z e s = w 1 , w 2 , . . . , w L P ( w l / A m ) //probability of windows length w l for an activity Am P ( A m / s i ) //probability of Activity A i associated with the sensor s i . function Probabilistic Approach(S,X) { x=nextEvent(X) w = m a x w l P ( w l / x ) = m a x w l [ P ( w l / A m ) × P ( A m / x ) ] end=time(x);//Next event return X.eventsIn(end-$w^\star$,end]); } function Metric base Approach(S,X) {//S=SegmentHistory, X=Events
indx=len(S[last])+1 //first event not in old segment m i = m e t r i c ( X [ i n d x ] , . . . , X [ i ] ) find first i which H ( m 0 . . . . m i ) is true// return X.eventsIn([time(X[indx]):time(X[i])]); } function SWAB Approach(S,X,bs) {//bs=Buffer size
indx=len(S[last])+1 //first event not in old segment m = B o t t o m U p ( X [ i n d x ] , . . . , X [ i n d x + b s ] ) return m[0]; } \end{lstlisting}

Similar Works

pyActLearn -> documents

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published