Skip to content

WindowsNT/VisualDML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual DML

A tool to visually-design DirectML operators that run in the GPU and to create and train a neural network with it. Uses my DirectML Lib.

Features for DirectML Design

  • Undo, Redo, Save, Load, Multiple Sets
  • Multiple Visible/Active DirectML operators
  • Direct2D Drawing
  • Memory Sharing
  • Input/Output CSV or binary, Input Random, Output to MessageBox
  • Adapter Selection
  • Show Adapter Memory Consumed
  • Variables
  • Generate C++ Code and VS Solution

Features for NN design

  • Design a neural network
  • MNIST-included dataset
  • Adapter Selection
  • Training on GPU
  • Training on CPU
  • Testing on GPU/CPU
  • Batch training
  • Saving/Loading model
  • Saving as PTH or ONNX with Python installed
  • Customizable network structure
  • Customizable activation functions

Supported DirectML Operators

  • Activation: Celu,Elu,Gelu,HardMax,HardSigmoid,Identity,LeakyRelu,Linear,LogSoftmax,ParameterizedRelu,ParametricSoftplus,Relu,ScaledElu,ScaledTanh,Shrink,Sigmoid,Softmax,Softplus,Softsign,Tanh,ThresholdedRelu
  • Batch Processing: BatchNormalization, BatchNormalizationGrad, BatchNormalizationTraining, BatchNormalizationTrainingGrad
  • Comparison Operators: If, IsInfinity, IsNaN
  • A: Abs,ACos,ACosh,Add,And,ASin,ASinh,ATan,ATanh,ATanYX,AveragePooling
  • B: BitAnd, BitCount, BitOr, BitNot, BitShiftLeft, BitShiftRight, BitXor
  • C: Cast, Ceil, Clip, ClipGrad, Constant, ConvolutionInteger, Cos, Cosh, Cummulative Sum/Product, Convolution
  • D: DepthToSpace, Dequantize, DequantizeLinear, DiagonalMatrix, DifferenceSquare, Divide
  • E: Erf, Exp, Equals
  • F: Floor
  • G: Gather, GatherElemends, GatherND, Gemm, GreaterThan, GreaterThanOrEqual, Gru
  • I: Identity,
  • J: Join
  • L: Log, LessThan, LessThanOrEqual, LocalResponseNormalization
  • M: Max,MaxPooling,Mean,MeanVarianceNormalization,Min,Multiply,Modulus Floor,Modulus Truncate
  • N: Neg, NonZeroCoordinates, Not
  • O: OneHot, Or
  • P: Padding, Pow
  • Q: QuantizedLinearConvolution, QuantizeLinear
  • R: RandomGenerator, Recip, Reduce, Resample, ResampleGrad, Round, RoiAlign, RoiAlignGrad, Reintrerpret, ReverseSubsequences
  • S: ScatterElements, Slice, SliceGrad, Subtract, Sqrt, Sign, SpaceToDepth
  • T: Threshold, TopK
  • U: Upsample2D
  • V: ValueScale2D
  • X: Xor

Screenshots

screenshot screenshot

ToDo

Complete VS project generation support

Recurrent NN training

Usage of batch DML operations for faster training

Implement Loops